If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-22x-30=0
a = 24; b = -22; c = -30;
Δ = b2-4ac
Δ = -222-4·24·(-30)
Δ = 3364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3364}=58$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-58}{2*24}=\frac{-36}{48} =-3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+58}{2*24}=\frac{80}{48} =1+2/3 $
| -2b+6+4b=5b | | 3x-9/4=7 | | 5v/9-1/3=2v/3+1/3 | | 3+3(x-9)=12-7x | | 3+3(x-9)=12-7 | | (2/5x)+x+30+x+(3/5x)=180 | | 12(2x-1)/6=25 | | (2/5x)+(x+30)+x+(3/5x)=180 | | 7+6p=-p+6p | | 4/9+m=5/6 | | -6(-1)-8y=-2 | | 14÷x=3.5 | | -7+4m+10=15-2m | | 5^2x=7.5 | | 2/5x+x+30+x+3/5x=180 | | 1/6s-1/2s+1=45/2 | | 13.64=8x.52 | | (2x^2–3x+4)(2x–3)= | | 2/5x+x+30°+x+3/5x=180° | | 5a+7=-60 | | 1/2(4r+6)=2/3(3=6r) | | 7(x-5)/3=24 | | 4(n+2)=-4 | | c/3+1=10 | | x²+x-240=0 | | (2x+25)(3x+5)+90+90=360 | | -9x+2(-3)=3 | | 2-x-3x=2-x+18 | | v-3.6=2.49 | | 1/6s-1/2s-2/2=45/2 | | 4x-46=84-9x | | 1/6-1/2s-2/2=45/2 |